سنجش از دور
پویا حیدری؛ اصغر میلان؛ علیرضا قراگوزلو
چکیده
پیشینه و اهداف: امروزه با توجه به استفاده روز افزون از اطلاعات پوشش و کاربری اراضی در کاربردهای مختلف، کسب این اطلاعات امری ضروری میباشد. استفاده از تصاویر سنجش از دوری به عنوان راهکار اصلی کسب این اطلاعات محسوب میشود. برای استخراج پوشش و کاربری اراضی از این تصاویر، میتوان از تکنیکهای طبقهبندی تصاویر بهره برد. با توجه به پتانسیل ...
بیشتر
پیشینه و اهداف: امروزه با توجه به استفاده روز افزون از اطلاعات پوشش و کاربری اراضی در کاربردهای مختلف، کسب این اطلاعات امری ضروری میباشد. استفاده از تصاویر سنجش از دوری به عنوان راهکار اصلی کسب این اطلاعات محسوب میشود. برای استخراج پوشش و کاربری اراضی از این تصاویر، میتوان از تکنیکهای طبقهبندی تصاویر بهره برد. با توجه به پتانسیل بالای روشهای یادگیری عمیق در طبقه بندی تصاویر، این روشها میتوانند به طور موثری در طبقهبندی پوشش و کاربری اراضی استفاده شوند. با این حال، استفاده از این روشها همراه با چالشهایی نیز میباشد. یکی از مشکلات اصلی استفاده از روشهای یادگیری عمیق، بیش برازش مدل میباشد. از دیگر معضلات اصلی این روشها میتوان به نیازمند بودن این روشها به تعداد بسیار زیاد داده در مرحله آموزش اشاره نمود. همچنین ناپدید شدن و انفجار گرادیان و انتخاب معماری مناسب از دیگر مشکلات و چالشهای این روشها برای استخراج پوشش و کاربری اراضی از تصاویر سنجش از دور میباشند .روشها: هدف اصلی این پژوهش استفاده از تکنیکهای مختلف برای رفع این چالشها و رسیدن به دقتهای بالا در انجام طبقهبندی پوشش و کاربری اراضی میباشد. برای مرتفع نمودن چالش بیش برازش مدل، از تکنیکهای حذف تصادفی و توقف زودهنگام استفاده شد تا دقت در دادههای آموزشی و تست نزدیک به یکدیگر باشند. استفاده از روش داده افزایی میتواند کمبود دادههای آموزشی را برطرف نماید و از بیش برازش مدل نیز جلوگیری کند. به همین علت از این روش برای افزایش داده های آموزشی مدل استفاده شد. تکنیک برش گرادیان نیز در این پژوهش استفاده شد تا از انفجار و ناپدید شدن گرادیان در مدلهای یادگیری عمیق جلوگیری کند. معماری استفاده شده در این پژوهش برای طبقه بندی مجموعه داده EuroSat، مدل ResNet18 بوده است.یافتهها: در ابتدا از این معماری به همراه تکنیک توقف زودهنگام برای انجام طبقه بندی استفاده شد و مدل به دقت کلی 19/91 درصد و ضریب کاپای 9018/0 رسید. سپس به همین مدل تکنیک داده افزایی اضافه شد و مدل به دقت کلی 78/91 درصد و ضریب کاپای 9085/0 دست یافت که نشان میدهد نسبت به مرحله قبلی دقتهای بهتری حاصل شده است. در مرحله آخر تکنیک حذف تصادفی با نرخ 5/0، برش گرادیان با حدآستانه 1/0 نیز به مدل قبلی اضافه شد و مدل به دقت کلی 11/93 درصد و ضریب کاپای 9233/0 رسید که نسبت به دو مرحله قبلی به دقت های بهتری رسیده است.نتیجهگیری: این نتایج نشان میدهد که دقت طبقهبندی پوشش و کاربری اراضی مجموعه داده EuroSat در مرحله آخر نسبت به مراحل قبلی به دقت بهتری دست یافته است.