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EECCICREN M) ST Large-scale wildfires, through the destruction of vegetation,

increased soil instability, and disruption of ecosystem functioning, have become one of the
most serious environmental challenges of the modern era. Accurate post-fire burn-area
delineation is essential for damage assessment, restoration planning, and risk management.
Satellite optical data—particularly Sentinel-2 imagery—combined with widely used spectral
indices provide a powerful basis for mapping burned areas; however, their performance
depends strongly on the choice of indices and classification models. The objective of this study
is to evaluate and compare the effectiveness of a classical statistical classifier, three machine
learning algorithms, and two deep learning architectures for burned-area detection, using a
combination of Sentinel-2 spectral bands and spectral indices in the Kenneth wildfire in Los
Angeles.

M Following selection of the post-fire Sentinel-2 imagery and cloud masking, eight
core spectral bands (visible, near-infrared, red-edge, and shortwave infrared) along with five
commonly used indices related to burn severity, vegetation condition, and moisture content
were extracted, forming a 15-variable input image for model development. Binary reference
labels (burned/unburned) were derived from the official wildfire incident database, and
spatially random sampling was used to create training (70%) and testing (30%) subsets. All
features were normalized using min—max scaling. Subsequently, a classical Maximum
Likelihood Estimation (MLE) classifier, three machine learning algorithms—Adaptive Boosting
(AdaBoost), Random Forest (RF), and Support Vector Machine (SVM)—and two deep learning
models—Convolutional Neural Network (CNN) and Multilayer Perceptron (MLP)—were
trained. Model evaluation was performed using confusion-matrix metrics including Accuracy,
Precision, Recall, F1-score, and Intersection over Union (loU). Feature importance was also
calculated for each algorithm.

m All models successfully distinguished the general burn pattern from the unburned
background; however, they differed substantially in numerical accuracy and spatial noise. The
MLE classifier, although yielding nearly 98% accuracy, showed the lowest reliability due to a
high rate of misclassified unburned pixels (FP) and scattered artifacts around burn perimeters.
Among machine learning methods, RF exhibited the best performance, achieving ~99.67%
Accuracy, ~97% F1-score, and the highest loU, with the lowest FP and FN values. SVM also
showed stable and competitive performance with an F1-score exceeding 96%, though slightly
more boundary-related errors than RF. AdaBoost improved notably over the statistical
classifier but, due to sensitivity to difficult samples, produced higher FN values. Both deep
learning models (CNN and MLP) generated smooth, low-noise burn maps and achieved
Accuracy, Fl-score, and loU values closely matching RF. Feature-importance analysis
indicated that shortwave infrared bands (SWIR-1, SWIR-2) and burn/vegetation indices—
particularly NBR, NDVI, and SAVI—were the most influential predictors, whereas visible bands
contributed less to model decisions.

The results demonstrate that integrating Sentinel-2 infrared bands with
vegetation and moisture indices, combined with machine learning and deep learning models,
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provides an accurate and robust framework for post-fire burn-area mapping in
heterogeneous landscapes. RF, followed by CNN and MLP, emerges as the most effective set
of models for operational implementation, while MLE and AdaBoost serve better as baseline
methods. Key limitations include reliance on a single wildfire event and single-date post-fire
data; thus, extending the framework to multiple fire regimes, diverse vegetation types, and
more complex topographic conditions, as well as incorporating multitemporal data and
radar/altimetry sensors, is recommended for future research. The findings support the
development of operational wildfire monitoring systems, prioritization of restoration zones,
and sustainable resource-management planning in fire-prone regions.
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Table 2: The most widely used spectral indicators for burned area detection based on Sentinel-2 images.
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Fig. 3: Spectral indices from Sentinel-2 images to detect burned areas and false color image within the Kenneth fire area in January 2025.
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Table 3: Comparing the performance of different models on training and test data.

Model Dataset Type Accuracy (%) Precision (%) Recall (%) F1-score (%) loU (%)
MLE Training 95.64 76.89 95.54 85.21 74.23
Testing 98.12 76.98 95.60 85.29 74.35

Adaboost Training 98.55 96.99 91.83 94.34 89.29
Testing 99.36 97.18 91.46 94.23 89.10

SVM Training 99.01 98.07 94.33 96.16 92.61
Testing 99.58 98.33 94.32 96.28 92.83

RF Training 99.97 99.95 99.81 99.88 99.76
Testing 99.67 99.02 95.14 97.04 94.25

CNN Training 98.79 98.86 91.96 95.24 90.91
Testing 99.47 98.85 91.85 95.22 90.88

MLP Training 98.99 97.47 94.74 96.09 92.47
Testing 99.58 97.71 94.79 96.23 92.73
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