نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نقشه‌برداری، دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

پیشینه و اهداف: موضوع شهرنشینی و نظارت بر گسترش شهری و تغییرات کاربری زمین با استفاده از تصاویر ماهواره‌ای، به یک مرکزیت اساسی در جامعه تبدیل ‌شده است. دسترسی آسان و پایدار به داده‌های ماهواره‌ای، این امکان را فراهم کرده که تغییرات زمینی را با دقت بیشتری رصد و نظارت کرد؛ اما برای بهره‌برداری بهینه از این تصاویر، لازم است نمونه‌هایی از تصاویر جمع‌آوری ‌شده و سپس پیکسل‌های آن‌ها بر اساس ویژگی‌ها و مشخصه‌های منطقه‌ای طبقه‌بندی شوند. این فرآیند، با چالش‌هایی همچون پراکندگی داده‌ها مواجه است که با استفاده از روش‌های طبقه‌بندی مناسب قابل‌ حل است. در این مطالعه، به‌منظور ارزیابی مساحت کاربری‌های زمین در شهرها، روش‌های متنوعی از یادگیری ماشین مورد استفاده قرارگرفته است. به‌جای استفاده از یک روش ثابت و مطلق برای طبقه‌بندی پیکسل‌ها، چهار روش مختلف یادگیری ماشین جداگانه برای هر تصویر مورد بررسی قرارگرفته است. این روش‌های متنوع از یادگیری ماشین امکان انتخاب بهترین و پرکارایی‌ترین روش برای هر تصویر را فراهم می‌کنند، به‌گونه‌ای که توانایی تشخیص و طبقه‌بندی پیکسل‌ها برای مساحت‌های کاربری زمین در شهرها را بهبود می‌بخشند و دقت و کارایی را افزایش می‌دهند.
روش‌ها‌: در این تحقیق، از تصویر ماهواره‌ای لندست 9 برای مطالعه و تحلیل منطقه‌های مختلف تهران در سال 2023 استفاده‌ شده است. ابتدا، تصویر مورد نظر تحت تصحیحات لازم قرارگرفته و سپس، چهار الگوریتم یادگیری ماشین متناسب (که شامل K- نزدیک‌ترین همسایه، ماشین بردار پشتیبان، جنگل تصادفی و حداکثر احتمال بودند) برای طبقه‌بندی تصاویر ماهواره‌ای لندست 9 مرتبط با چهار منطقه مختلف تهران (شامل 2، 5، 21، 22) به‌کار گرفته شدند. برای ارزیابی دقت نتایج، بیش از ۲۰۰ نقطه چک با استفاده از روش Stratified Random بر روی تصویر ایجاد شدند و سپس از Google Earth Pro برای بررسی دقیق نقاط چک استفاده شد. دقت طبقه‌بندی کلی و ضریب کاپا به‌عنوان معیارهای ارزیابی بهترین روش طبقه‌بندی پیکسل‌های تصویر مورد بررسی قرار گرفتند. در مرحله بعد، منطقه مورد مطالعه به‌منظور درک بهتر مساحت کاربری‌های زمین در آن ناحیه به بلوک‌های مساوی تقسیم شد. سپس با استفاده از روابط آماری رستری (Zonal Statistic)، میزان مساحت کاربری‌های زمین در هر بلوک مورد بررسی قرار گرفت.
یافته‌ها: بر اساس روش‌های مورد استفاده، عملکرد روش SVM در این مطالعه به‌دقت بیشترین مقدار ممکن، که معادل 95 درصد است، و ضریب کاپا، که به نسبت 89 درصد است، دست‌یافت. این نتایج ممکن است به دلیل عدم یکنواختی پهنه‌های پیکسل در محیط‌های شهری پرتراکم توجیه شود. علاوه بر این، مساحت‌های مختلفی از زمین از جمله مناطق سبز با مساحت 12 کیلومترمربع، زمین‌های بایر با مساحت 64 کیلومترمربع و مناطق ساخته‌ شده با مساحت 137 کیلومترمربع نیز در این تحلیل مورد بررسی قرار گرفتند.
نتیجه‌گیری: از طریق این رویکرد، ما یک روش طبقه‌بندی بسیار دقیق را برای تحلیل تصاویر ماهواره‌ای مربوط به ماهواره لندست 9 ارائه داده‌ایم. این روش، امکان ارزیابی دقیق‌تری از مساحت کاربری‌های زمین را فراهم می‌کند و به تصمیم‌گیریان شهری و سیاست‌گذاران ارتباط مستقیمی با بینش‌های ارزشمندی برای توسعه پایدار در شهرها ارائه می‌دهد. این امر، می‌تواند در فرآیند تسهیل طرح‌های توسعه‌ای برای بهبود شهرها و زندگی شهروندان نقش مؤثری ایفا کند، زیرا اطلاعات دقیق و معتبری را ارائه می‌دهد که به تصمیم‌گیری‌های استراتژیک در حوزه توسعه شهری کمک می‌کند و امکان اعمال تغییرات مؤثرتر و هدفمندتر در سیاست‌ها و برنامه‌های شهری را فراهم می‌سازد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Using Machine Learning Methods for Classify Landsat 9 Satellite Images in Order to Evaluate The Area of Urban Land Uses (West of Tehran)

نویسندگان [English]

  • H. Joulaei
  • A. R. Vafaeinajad

گروه مهندسی نقشه‌برداری، دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده [English]

Background and Objectives: The issue of urbanization and monitoring of urban expansion and land use changes using satellite images has become a basic focus in the society. Easy and stable access to satellite data has made it possible to monitor and monitor land changes more accurately; But for optimal use of these images, it is necessary to collect samples of images and then classify their pixels based on regional features and characteristics. This process faces challenges such as data dispersion, which can be solved by using appropriate classification methods. In this study, in order to evaluate the area of land uses in cities, various methods of machine learning have been used. Instead of using a fixed and absolute method for classifying pixels, four different machine learning methods are investigated separately for each image. These diverse methods of machine learning provide the possibility of choosing the best and most efficient method for each image, thus improving the ability to detect and classify pixels for land use areas in cities and increasing accuracy and efficiency.
Methods: In this research, the Landsat 9 satellite image has been used to study and analyze different areas of Tehran in 2023. First, the desired image was subjected to the necessary corrections and then four appropriate machine learning algorithms (which included K-nearest neighbor, support vector machine, random forest and maximum likelihood) were used to classify Landsat 9 satellite images related to four different areas of Tehran (including 2, 5 , 21, 22) were used. To evaluate the accuracy of the results, more than 200 check points were created on the image using the Stratified Random method, and then Google Earth Pro was used to check the check points. The overall classification accuracy and kappa coefficient were evaluated as evaluation criteria for the best classification method of image pixels. In the next step, the studied area was divided into equal blocks in order to better understand the area of land uses in that area. Then, using Zonal Statistics, the amount of land use area in each block was investigated.
Findings: Based on the methods used, the performance of the SVM method in this study achieved the highest possible accuracy, which is equal to 95%, and the Kappa coefficient, which is 89%. These results may be justified due to the non-uniformity of pixel areas in dense urban environments. In addition, different areas of land, including green areas with an area of 12 square kilometers, barren lands with an area of 64 square kilometers, and built-up areas with an area of 137 square kilometers were also examined in this analysis.
Conclusion: Through this approach, we have presented a highly accurate classification method for the analysis of satellite images related to the Landsat 9 satellite. This method enables a more accurate assessment of the area of land uses and provides urban decision makers and policy makers with a direct link with valuable insights for sustainable development in cities. This can play an effective role in the process of facilitating development plans to improve cities and citizens' lives, because it provides accurate and reliable information that helps strategic decisions in the field of urban development and enables more effective and targeted changes in urban policies and programs.

کلیدواژه‌ها [English]

  • Landsat 9 Satellite Image
  • Machine Learning
  • Land Use
  • Classification

COPYRIGHTS 
© 2024 The Author(s).  This is an open-access article distributed under the terms and conditions of the Creative Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/

[1] M. A. Kuddus, E. Tynan, and E. McBryde, “Urbanization: A problem for the rich and the poor?,” Public Health Rev, vol. 41, no. 1, Jan. 2020, DOI: 10.1186/s40985-019-0116-0.
[2]“Urbanization.” Accessed: Dec. 09, 2023. [Online]
https://un.org/development/desa/pd/content/urbanization-0
[3] A. Talib, “International Environmental Modelling and Software Society (iEMSs) 2010 International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Bienn... Potentiality of ecotourism development of Kirala Kele Partial-Nature-Based wetland the Southern Sri Lanka View project The Use of Probiotics to Optimize Mud Crab Scylla paramamosain Larval Culture. View project Noresah Mohd Shariff Sanjay Gairola Environment and Protected Areas Authority Sharjah,” 2010. [Online].
https://www.researchgate.net/publication/235931337
[4] X. Sun, C. Zhang, and Q. Tan, “Factors Influencing the Coordinated Development of Urbanization and Its Spatial Effects: A Case Study of Beijing-Tianjin-Hebei Region,” Sustainability (Switzerland), vol. 15, no. 5, Mar. 2023
doi: 10.3390/su15054137.
[5] Muhammad Nasar-u-minAllah Bhalli and Abdul Ghaffar, “Use of Geospatial Techniques in Monitoring Urban Expansion and Land Use Change Analysis: A Case of Lahore, Pakistan,” Journal of Basic & Applied Sciences, vol. 11, pp. 265–273, Jan. 2015, doi: 10.6000/1927-5129.2015.11.38.
[6] A. Rienow, A. Mustafa, L. Krelaus, and C. Lindner, “Modeling urban regions: Comparing random forest and support vector machines for cellular automata,” Transactions in GIS, vol. 25, no. 3, pp. 1625–1645, Jun. 2021
doi: 10.1111/tgis.12756.
[7] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13. Institute of Electrical and Electronics Engineers Inc., pp. 6308–6325, 2020.
doi: 10.1109/JSTARS.2020.3026724.
[8] Y. G. Yuh, W. Tracz, H. D. Matthews, and S. E. Turner, “Application of machine learning approaches for land cover monitoring in northern Cameroon,” Ecol Inform, vol. 74, May 2023 doi: 10.1016/j.ecoinf.2022.101955.
[9] Y. O. Ouma, A. Keitsile, B. Nkwae, P. Odirile, D. Moalafhi, and J. Qi, “Urban land-use classification using machine learning classifiers: comparative evaluation and post-classification multi-feature fusion approach,” Eur J Remote Sens, vol. 56, no. 1, 2023
doi: 10.1080/22797254.2023.2173659.
[10] Y. Qian, W. Xing, X. Guan, T. Yang, and H. Wu, “Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation,” Science of the Total Environment, vol. 722, Jun. 2020
doi: 10.1016/j.scitotenv.2020.137738.
[11] K. M. Gilbert and Y. Shi, “Land use/land cover change detection and prediction for sustainable urban land management in Kigali City, Rwanda,” vol. 2023, no. 2, pp. 62–75, [Online]
https://publish.mersin.edu.tr/index.php/alm
[12] C. Huang, L. S. Davis, and J. R. G. Townshend, “An assessment of support vector machines for land cover classification,” Int J Remote Sens, vol. 23, no. 4, pp. 725–749, Feb. 2002 doi: 10.1080/01431160110040323.
[13] P. Thanh Noi and M. Kappas, “Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery,” Sensors (Basel), vol. 18, no. 1, Dec. 2017
doi: 10.3390/s18010018.
[14] S. K. Hanoon, A. F. Abdullah, H. Z. M. Shafri, and A. Wayayok, “Urban Growth Forecast Using Machine Learning Algorithms and GIS-Based Novel Techniques: A Case Study Focusing on Nasiriyah City, Southern Iraq,” ISPRS Int J Geoinf, vol. 12, no. 2, Feb. 2023 doi: 10.3390/ijgi12020076.
 
[15] A. Rash, Y. Mustafa, and R. Hamad, “Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq,” Heliyon, vol. 9, no. 11, Nov. 2023
doi: 10.1016/j.heliyon.2023.e21253.
[16] V. K. Rana and T. M. Venkata Suryanarayana, “Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands,” Remote Sens Appl, vol. 19, Aug. 2020
doi: 10.1016/j.rsase.2020.100351.
[17] H. S. Pokhariya, D. P. Singh, and R. Prakash, “Evaluation of different machine learning algorithms for LULC classification in heterogeneous landscape by using remote sensing and GIS techniques,” Engineering Research Express, vol. 5, no. 4, Dec. 2023 doi: 10.1088/2631-8695/acfa64.
[18] L. Ghayour et al., “Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms,” Remote Sens (Basel), vol. 13, no. 7, Apr. 2021,
doi: 10.3390/rs13071349.
[19] “Landsat Collection 2 Level-1 Data.” Accessed: Dec. 07, 2023. [Online].
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-1-data
[20] “Landsat Collection 2 Level-2 Science Products.”
[21] J. Manuel Núñez, S. Medina, G. Ávila, and J. Montejano, “High-Resolution Satellite Imagery Classification for Urban Form Detection,” in Satellite Information Classification and Interpretation, IntechOpen, 2019
doi: 10.5772/intechopen.82729.
[22] F. Seyyed Bagher and R. Yosof, Principles of Remote Sensing. Iran-Isfahan: Azadeh, 2015.
[23] I. Nurwauziyah, U. D. Sulistyah, I. Gede, B. Putra, M. I. Firdaus, and D. S. Umroh, “Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor,” 2018. [Online].
https://www.researchgate.net/publication/326316293
[24] S. Abburu and S. B. Golla, “Satellite Image Classification Methods and Techniques: A Review,” 2015.
[25] R. Li and S. Li, “Multimedia Image Data Analysis Based on KNN Algorithm,” Comput Intell Neurosci, vol. 2022, 2022
doi: 10.1155/2022/7963603.
[26] “Lecture 2: k-nearest neighbors.” Accessed: Dec. 10, 2023. [Online]
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html#:~:text=The%20k%2DNN%20algorithm&text=Denote%20the%20set%20of%20the,furthest%20point%20in%20Sx).
 
[27] L. Zhu and P. Spachos, “Support vector machine and YOLO for a mobile food grading system,” Internet of Things (Netherlands), vol. 13, Mar. 2021
doi: 10.1016/j.iot.2021.100359.
[28] “Support Vector Machine(SVM): A Complete guide for beginners Introduction to Support Vector Machine(SVM).”
[29] Esri, “Train Random Trees Classifier (Spatial Analyst),” 2023, Accessed: Dec. 10, 2023. [Online].
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/train-random-trees-classifier.htm
[30] A. Ghosh, R. Sharma, and P. K. Joshi, “Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion,” Applied Geography, vol. 48, pp. 31–41, Mar. 2014
doi: 10.1016/j.apgeog.2014.01.003.
[31] M. Y. Khan, A. Qayoom, M. S. Nizami, M. S. Siddiqui, S. Wasi, and S. M. K. U. R. Raazi, “Automated Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant Supervision, Machine Learning, and Word Embedding-Based Deep Learning Techniques,” Complexity, vol. 2021, 2021
doi: 10.1155/2021/2553199.
[32] Y. Yao, J. Li, X. Zhang, P. Duan, S. Li, and Q. Xu, “Investigation on the expansion of urban construction land use based on the CART-CA Model,” ISPRS Int J Geoinf, vol. 6, no. 5, May 2017
doi: 10.3390/ijgi6050149.