نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نقشه‌برداری، دانشکده مهندسی، دانشگاه زابل، زابل، ایران

2 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

پیشینه و اهداف: یکی از آنالیزهایی که بر روی تصاویر فراطیفی انجام می­شود، آشکارسازی هدف است. معمولترین روش جهت آشکارسازی هدف در تصاویر ماهواره­ای، آشکارسازی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسلهای همسایگی به کلاس مشخص اختصاص می­یابد. با پیشرفت­های اخیر و ایجاد تصاویری باقدرت تفکیک مکانی بالا، لزوم استفاده توأم از اطلاعات طیفی و مکانی را در آشکارسازی تصاویر فراطیفی ایجاب می­کند. در این پژوهش به آشکار­سازی بام‌های دارای پوشش خاص به‌عنوان هدف، در یک محیط شهری از طریق یک سری تصویر فراطیفی پرداخته می­شود. از آنجائی که یک محیط شهری دارای ویژگی­های پیچیده‌ای از نظر فیزیکی، هندسی و عناصر به کار گرفته شده در ساختمان‌هاست، داده­های فراطیفی کمک مؤثری به شناسایی، استخراج و تولید نقشه از عناصر سازنده یک محیط شهری می­کنند. شناسایی جنس بام ساختمان‌ها در محیط­های شهری، اهمیت زیادی در کاربردهای گوناگون، چون ارتباطات تلفن­های همراه، واقعیت مجازی، معماری و مدلسازی شهری، برنامه­ریزی و مدیریت شهرها دارد.
روش‌ها‌: در این تحقیق استراتژی اطلاعات مکانی در کنار اطلاعات طیفی جهت بهبود آشکارسازی هدف در آنالیز تصاویر فراطیفی مورد بررسی قرار می­گیرد. برای این منظور از الگوریتم طیفی-مکانی جنگل پوشای مینیمم مبتنی بر نشانه که در فرآیند طبقه­بندی تصاویر استفاده شده است، جهت آشکارسازی بام ساختمان­های با پوشش خاص استفاده می­گردد. در روش پیشنهادی نشانه­ها از روی نقشه طبقه­بندی ماشین بردار پشتیبان انتخاب شدند. برای این منظور آنالیز برچسب­گذاری مولفه­های متصل بر اساس 8 پیکسل همسایگی انجام گرفت. بعد از ایجاد درخت پوشای مینیمم و حذف یال­های مربوط به رأس اضافه شده در مرحله آخر، جنگل پوشای مینیمم حاصل می­شود. در الگوریتم جنگل پوشای مینیمم هر درخت روی یکی از رئوس تصویر رشد می­نماید و با اختصاص دادن کلاس هر نشانه به همه پیکسل‌های رشد یافته از آن، نقشه آشکارسازی طیفی-مکانی حاصل می­گردد.
یافته‌ها: تکنیک‌های فوق بر روی یک سری از داده­های تصویری سنجنده CASI که از منطقه شهری تولوز واقع در جنوب فرانسه برداشت شده است، اعمال شدند. نتایج ارزیابی­های کمی و کیفی نشان می­دهد که روش پیشنهادی مقدار ضریب کاپا را به میزان 38 درصد در مقایسه با الگوریتم آشکارسازی اندازه­گیری زاویه طیفی بهبود داده است. این موضوع اهمیت به کارگیری اطلاعات مکانی در فرآیند آشکارسازی را نشان می­دهد، درحالی‌که الگوریتم­ اندازه­گیری زاویه طیفی جهت آشکارسازی فقط نیاز به اطلاعات طیفی هدف موردنظر دارد.
نتیجه‌گیری: همزمان با رشد شهرنشینی و توسعه مناطق شهری نیاز مدیران و برنامه­ریزان به نقشه­های بسیار دقیق از مناطق شهری به طور چشمگیری افزایش یافته است. استفاده از اطلاعات مکانی به خصوص در مورد تصاویر اخذ شده از مناطق شهری که در آن­ها چندین پیکسل مجاور به یک کلاس یا عارضه یکسان تعلق دارند، می­تواند باعث بهبود دقت در آشکارسازی شود. در نظر است در تحقیقات آتی از میزان خطای موجود در آشکارسازی طیفی-مکانی هدف کاسته شود. شرایط ایجاد پیکسل‌های مختلط مانند هم­پوشانی پدیده­های زمینی و ناهمگن بودن اکثر پدیده­ها، و درنتیجه افزایش واریانس داخلی هدف موجب افزایش خطای آشکارسازی در تصاویر فراطیفی می‌شود. ازاین‌رو سعی بر این است که بتوان با استفاده از روش‌های مختلف خطاهای فوق را کم نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Building Detection with Special Roofing in Urban Areas using Hyperspectral Remote Sensing Technology

نویسندگان [English]

  • D. Akbari 1
  • M. Akbari 2

1 Department of Surveying Engineering, Faculty of Engineering, University of Zabol, Zabol, Iran

2 Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran

چکیده [English]

target detection. The most common method for target detection in satellite images is pixel-based detection, in which each pixel is assigned to a specific class with only its spectral information and without considering neighboring pixels. With recent advances and the creation of images with high spatial resolution, it is necessary to use both spectral and spatial information to detect hyperspectral images. This research deals with the detection of roofs with special coverage as a target, in an urban environment, through a series of hyperspectral images. Since an urban environment has complex characteristics in terms of physics, geometry and elements used in buildings, hyperspectral data effectively helps to identify, extract and produce a map of the elements that make up an urban environment. Identifying the type of roof of buildings in urban environments is very important in various applications, such as mobile phone communications, virtual reality, architecture and urban modeling, planning, and city management.
Methods: In this research, the spatial information strategy is investigated along with the spectral information to improve target detection in the analysis of hyperspectral images. For this purpose, the spectral-spatial algorithm of marker-based minimum spanning forest, which is used in the image classification process, is used to detect the roofs of buildings with special coverage. The markers were selected from the support vector machine classification map in the proposed method. For this purpose, the analysis of the labeling of the connected components was done based on 8 neighboring pixels. The minimum spanning forest is obtained after creating the minimum spanning tree and removing the ridges related to the added vertex in the last step. In the minimum spanning forest algorithm, each tree grows on one of the vertices of the image, and by assigning the class of each marker to all the pixels grown from it, a spectral-spatial detection map is obtained.
Findings: The above techniques were applied on a series of CASI sensor image data taken from the urban area of ​​Toulouse located in the south of France. The results of quantitative and qualitative evaluations show that the proposed method has improved the value of the Kappa coefficient by 38% in comparison with the spectral angle measurement detection algorithm. This shows the importance of using spatial information in the detection process, while the spectral angle measurement algorithm only needs the spectral information of the desired target for detection.
Conclusion: Simultaneously with the growth of urbanization and the development of urban areas, the need of managers and planners for very accurate maps of urban areas has increased significantly. The use of spatial information, especially in the case of images taken from urban areas where several adjacent pixels belong to the same class or complex, can improve detection accuracy. It is intended to reduce the amount of error in the spectral-spatial detection of the target in the future research. The conditions of creating mixed pixels, such as the overlap of terrestrial phenomena and the heterogeneity of most phenomena, and as a result, the increase of the internal variance of the target, increase the detection error in hyperspectral images. Therefore, it is tried to reduce the above errors by using different methods.

کلیدواژه‌ها [English]

  • Building detection
  • Urban area
  • Remote sensing
  • Hyperspectral imagery

COPYRIGHTS 
© 2024 The Author(s).  This is an open-access article distributed under the terms and conditions of the Creative Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/)  

[9] Carvalho, O.A., & Meneses, P.R. (2002). Spectral Correlation Mapper (SCM): An Improvement on the Spectral Angle Mapper (SAM), Asa Norte, 70910-900, Brasília, DF, Brasil, 1-9.
http://dx.doi.org/10.1007/978-1-4419-9170-6
https://doi.org/10.1109/21.256541
[14] Frolov, D., & Smith, R.B. (1999). Locally Adaptive Constrained Energy minimization for AVIRIS image, Eighth JPL Airborne Earth Science (AVIRS), http://www.microimages.com/papers/.
https://doi.org/10.1672/08-194.1
[24] Fauvel, M. (2007). Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data, PhD thesis, Grenoble Institute of Technology, 1-180.
[27] Jain, R., Kasturi, R., & Schunck, B.G. (1995). Machine Vision. McGraw-Hill series in Computer Science., McGraw-Hill, Inc, 1-549.
[28] Soille, P. (2006). Morphological Image Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5): 673-683. https://doi.org/10.1109/TPAMI.2006.99
[31] Homayouni, S., & Roux, M. (2005). Hyperspectral image analysis for material mapping using spectral matching, ISPRS04-Istanbul, GET, Telecom Paris, UMR 5141 LTCI, Department TSI, 46 rue Barrault, 75013 Paris, France.
[36] Hou, Y., Zhang, Y., Yao, L., Liu, X., & Wang, F. (2016). Mineral target detection based on MSCPE_BSE in hyperspectral image, the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 1614–1617. https://doi.org/10.1109/IGARSS.2016.7729412
[38] Akbari, D., Saadatseresht, M., & Homayouni, S. (2008a). Hyperspectral Detection Improvement by using Spectral-Spatial feature, the Map Asia 2008 Conference, Kuala Lumpur, Malaysia.
[40] Nasrabadi, N.M. (2008). Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery, SPLetters, 1: 317-320.
https://doi.org/10.1007/978-1-4757-3264-1
[43] Homayouni, S., & Roux, M. (2003). Material Mapping from Hyperspectral Images using Spectral Matching in Urban Area, IEEE Workshop on Advances in Techniques for analysis of Remotely Sensed Data, NASA Goddard center, Washington DC, USA.