سنجش از دور
پویا حیدری؛ اصغر میلان؛ علیرضا قراگوزلو
چکیده
پیشینه و اهداف: امروزه با توجه به استفاده روز افزون از اطلاعات پوشش و کاربری اراضی در کاربردهای مختلف، کسب این اطلاعات امری ضروری میباشد. استفاده از تصاویر سنجش از دوری به عنوان راهکار اصلی کسب این اطلاعات محسوب میشود. برای استخراج پوشش و کاربری اراضی از این تصاویر، میتوان از تکنیکهای طبقهبندی تصاویر بهره برد. با توجه به پتانسیل ...
بیشتر
پیشینه و اهداف: امروزه با توجه به استفاده روز افزون از اطلاعات پوشش و کاربری اراضی در کاربردهای مختلف، کسب این اطلاعات امری ضروری میباشد. استفاده از تصاویر سنجش از دوری به عنوان راهکار اصلی کسب این اطلاعات محسوب میشود. برای استخراج پوشش و کاربری اراضی از این تصاویر، میتوان از تکنیکهای طبقهبندی تصاویر بهره برد. با توجه به پتانسیل بالای روشهای یادگیری عمیق در طبقه بندی تصاویر، این روشها میتوانند به طور موثری در طبقهبندی پوشش و کاربری اراضی استفاده شوند. با این حال، استفاده از این روشها همراه با چالشهایی نیز میباشد. یکی از مشکلات اصلی استفاده از روشهای یادگیری عمیق، بیش برازش مدل میباشد. از دیگر معضلات اصلی این روشها میتوان به نیازمند بودن این روشها به تعداد بسیار زیاد داده در مرحله آموزش اشاره نمود. همچنین ناپدید شدن و انفجار گرادیان و انتخاب معماری مناسب از دیگر مشکلات و چالشهای این روشها برای استخراج پوشش و کاربری اراضی از تصاویر سنجش از دور میباشند .
روشها: هدف اصلی این پژوهش استفاده از تکنیکهای مختلف برای رفع این چالشها و رسیدن به دقتهای بالا در انجام طبقهبندی پوشش و کاربری اراضی میباشد. برای مرتفع نمودن چالش بیش برازش مدل، از تکنیکهای حذف تصادفی و توقف زودهنگام استفاده شد تا دقت در دادههای آموزشی و تست نزدیک به یکدیگر باشند. استفاده از روش داده افزایی میتواند کمبود دادههای آموزشی را برطرف نماید و از بیش برازش مدل نیز جلوگیری کند. به همین علت از این روش برای افزایش داده های آموزشی مدل استفاده شد. تکنیک برش گرادیان نیز در این پژوهش استفاده شد تا از انفجار و ناپدید شدن گرادیان در مدلهای یادگیری عمیق جلوگیری کند. معماری استفاده شده در این پژوهش برای طبقه بندی مجموعه داده EuroSat، مدل ResNet18 بوده است.
یافتهها: در ابتدا از این معماری به همراه تکنیک توقف زودهنگام برای انجام طبقه بندی استفاده شد و مدل به دقت کلی 19/91 درصد و ضریب کاپای 9018/0 رسید. سپس به همین مدل تکنیک داده افزایی اضافه شد و مدل به دقت کلی 78/91 درصد و ضریب کاپای 9085/0 دست یافت که نشان میدهد نسبت به مرحله قبلی دقتهای بهتری حاصل شده است. در مرحله آخر تکنیک حذف تصادفی با نرخ 5/0، برش گرادیان با حدآستانه 1/0 نیز به مدل قبلی اضافه شد و مدل به دقت کلی 11/93 درصد و ضریب کاپای 9233/0 رسید که نسبت به دو مرحله قبلی به دقت های بهتری رسیده است.
نتیجهگیری: این نتایج نشان میدهد که دقت طبقهبندی پوشش و کاربری اراضی مجموعه داده EuroSat در مرحله آخر نسبت به مراحل قبلی به دقت بهتری دست یافته است.
سنجش از دور
مجید حیدری قولانلو؛ رضا جوانمرد علی تپه؛ عبادت قنبری پرمهر
چکیده
پیشینه و اهداف: با پیشرفت تکنولوژی و پیدایش ماهوارههای چندمنظوره، اطلاعات لحظهای زیادی از سطح زمین مخابره میشود. ماهواره ها به سنجنده هایی مجهز هستند که می توانند با ارسال سیگنالهایی در فرکانسهای مختلف به سطح زمین به اطلاعات مهمی دست یابند. دادههای دریافتی از این ماهوارهها در کاربردهای مختلف علمی و نظامی از جمله: هوانوردی، ...
بیشتر
پیشینه و اهداف: با پیشرفت تکنولوژی و پیدایش ماهوارههای چندمنظوره، اطلاعات لحظهای زیادی از سطح زمین مخابره میشود. ماهواره ها به سنجنده هایی مجهز هستند که می توانند با ارسال سیگنالهایی در فرکانسهای مختلف به سطح زمین به اطلاعات مهمی دست یابند. دادههای دریافتی از این ماهوارهها در کاربردهای مختلف علمی و نظامی از جمله: هوانوردی، مطالعات جغرافیایی، هواشناسی، کشاورزی و دیگر حوزههای تحقیقاتی قابل استفاده است. حوزهی کشاورزی و پایش سطوح کشت نیز یکی از حوزههایی است که با توجه به مزیتهای روشهای سنجشازدور در مقایسه با روشهای سنتی، بهعنوان یکی از ابزارهای اصلی در جمعآوری اطلاعات محیطی برای کاربردهای پایش نواحی، مورد توجه پژوهشگران قرار گرفته است. یکی از این موضوعات، پایش منطقهای برای بررسی محصولات کشاورزی در مساحت سطح زیرکشت است که استفاده از ابزارهای سنجشازدور و تصاویر ماهوارهای به جهت پوشش منطقهای وسیع بسیار کارا است. جهت بررسی خودکار این تصاویر، طبقهبندی و بخشبندی نواحی سطح زیرکشت، امروزه از روشهای یادگیری ماشین استفاده میشود. در میان این روشها، یادگیری عمیق در مقایسه با دیگر روشهای یادگیری مانند روشهای دستی و یا روشهای نیمهخودکار، عملکرد بهتر و سرعت بالاتری دارد.روشها: در این مقاله مدلهای یادگیری عمیق که برای بخشبندی نواحی مناسب هستند مورد استفاده قرار گرفته است. عموما این مدلها بازای هر ورودی، خروجی معادل آن را با همان ابعاد تولید می کنند. لذا جهت کار بر روی تصاویر ماهوارهای، در این پژوهش مدل U-Net بهبود یافتهای ارائه شده است. مدل پیشنهادی با استفاده از ViT در گلوگاه مدل برای طبقهبندی و بخشبندی چهار نوع محصول کشاورزی شامل برنج، گندم، کلزا و ذرت توسعه داده شده است. استفاده از ViT در مقایسه با لایههای کانولوشن از لحاظ ایده و پیادهسازی الگوریتمی کاراتر است و حجم محاسباتی کمتری دارد. این مدل مشکلات و نقاط ضعف مدل پایه U-Net را که برای مجموعه دادههای پیچیده، متنوع در شکل، اندازه و بافت به وجود میآید، برطرف مینماید.یافتهها: در نتایج آزمایشات انجام شده روش پیشنهادی توانسته است با رسیدن به دقت 83.84 و صحت 70.69، بهتر از دیگر روشها دستهبندی درستی از 5 محصول مورد نظر را ارائه دهد. همچنین خروجیهای کیفی نیز نشاندهندهی بخشبندی بهتر تصاویر ورودی با اعمال روش پیشنهادی میباشد. در کنار معیار دقت، دیگر معیارها مانند افت کانونی، بازیابی و MIoU نیز مورد بررسی قرار گرفت که در اکثر موارد روش پیشنهادی به مقدار قابل قبولی رسیده است. لازم به ذکر است که با توجه به اینکه منطقه ی مورد نظر در ایران در نظر گرفته شد، جمع آوری و برچسب گذاری داده ها نیز در این پژوهش انجام شده است که میتواند بعنوان مجموعه داده ی مناسبی برای آموزش دیگر مدلها استفاده شود.نتیجهگیری: این تحقیق یک مدل سرتاسری برای یادگیری ویژگیهای مرتبط با بخش بندی تصاویر ماهوارهای ارائه داده است. نتایج این تحقیق نشان میدهد که روش ارائه شده میتواند برای بخش بندی تصاویر ماهواره ای دریافتی از سنتینل-2 برای محصولات مورد نظر مورد استفاده قرار گیرد. لذا نتایج حاصل می تواند در مدیریت مصرف آب، تنظیم ساختار کاشت، تخمین تلفات و ارزیابی عملکردهای زراعی نقش مهمی را ایفا نماید. با بهرهگیری از این روشها، میتوان به بهبود کارایی و دقت در مدیریت کشاورزی دست یافت و از منابع این حوزه بهینهتراستفاده کرد.
فتوگرامتری
مهدی فرهنگی؛ اصغر میلان؛ سعید صادقیان
چکیده
پیشینه و اهداف: طبقهبندی دقیق کاربری اراضی برای مدیریت مؤثر منابع طبیعی، برنامهریزی شهری، کشاورزی دقیق و پایش محیط زیست ضروری است. طبقهبندی به پیشبینی و پیشگیری از مشکلات زیستمحیطی کمک میکند. روشهایی مانند تصاویر ماهوارهای و هوایی با وضوح بالا، GIS و تکنیکهای یادگیری عمیق از جمله شبکههای عصبی کانولوشنال (CNN) و معماری ...
بیشتر
پیشینه و اهداف: طبقهبندی دقیق کاربری اراضی برای مدیریت مؤثر منابع طبیعی، برنامهریزی شهری، کشاورزی دقیق و پایش محیط زیست ضروری است. طبقهبندی به پیشبینی و پیشگیری از مشکلات زیستمحیطی کمک میکند. روشهایی مانند تصاویر ماهوارهای و هوایی با وضوح بالا، GIS و تکنیکهای یادگیری عمیق از جمله شبکههای عصبی کانولوشنال (CNN) و معماری U-Net دقت بالایی در تحلیل و طبقهبندی تصاویر هوایی ارائه میدهند. شبکه U-Net با ساختار منحصر به فرد خود در تعریف مرزهای کاربری اراضی برتری دارد. این مطالعه بر روی منطقهای در لهستان تمرکز دارد و از مدل U-Net برای افزایش دقت و کارایی طبقهبندی از طریق تکنیکهای منظمسازی و بهینهساز Adam استفاده میکند.روشها: در این تحقیق از تصاویر هوایی با قدرت تفکیک ۲۵ سانتیمتر و در باند مرئی برای تحلیل و طبقهبندی کاربری اراضی استفاده شده است. مدل U-Net به دلیل معماری خاص خود، شامل بلوکهای کانولوشن و فعالسازی ReLU، برای استخراج ویژگیهای مکانی دقیق و حفظ جزئیات تصویر انتخاب شد. به منظور افزایش دقت و جلوگیری از بیش برازش، از تکنیکهای منظمسازی مانند حذف تصادفی (Dropout) و Regularization L2 بهره گرفته شد. همچنین، برای بهبود همگرایی مدل، روشهای افزونسازی داده و تکنیک توقف زودهنگام (Early Stopping) به کار رفته است. تصاویر هوایی به قطعات کوچکتر با ابعاد ۲۵۶×۲۵۶ پیکسل تقسیم و به سه مجموعه آموزشی، اعتبارسنجی و آزمون تقسیم شدند.یافتهها: الگوریتم U-Net بر روی دادههای شهر پوزنان در کشور لهستان اعمال شد. این دادهها توسط کارشناسان برچسبگذاری شدند و شامل چهار نوع کاربری اراضی: ساختمانها، جنگلها، جادهها و آب هستند. از 769 تصویر برچسبگذاری شده، 576 تصویر برای آموزش مدل (که پس از تکنیک افزونسازی داده به 2304 تصویر گسترش یافت)، 183 تصویر برای اعتبارسنجی و 10 تصویر نیز برای آزمایش استفاده شد. این مدل، با استفاده از زبان برنامهنویسی Python و کتابخانه Keras بر بستر TensorFlow توسعه یافته و در Google Colab آموزش داده شد و پس از 96 تکرار به دقت بالایی رسید و با نقشههای برچسبگذاری شده توسط کارشناسان اعتبارسنجی شد. در حالی که مدل U-Net در دستهبندی کلی عملکرد خوبی داشت، با چالشهایی در کلاسهای نادر مانند آب مواجه شد. افزایش دادهها و نمونههای بیشتر برای این کلاسها میتواند دقت را بهبود بخشد. دقتهای آموزش و اعتبارسنجی به ترتیب به 0.95 و 0.85 رسید و خطای اعتبارسنجی در حدود 0.5 تثبیت شد. مدل U-Net بهبودهای قابل توجهی در دقت کلی، ضریب کاپا و امتیاز ژاکارد نسبت به مطالعات قبلی نشان داد که حاکی از اهمیت دادههای با کیفیت و تنظیم دقیق پارامترها است.نتیجهگیری: در این مطالعه، مدل یادگیری عمیق U-Net، برای دستهبندی دقیق کاربری اراضی با استفاده از تصاویر هوایی مورد ارزیابی قرار گرفت. نتایج نشان میدهد که این مدل به طور مؤثر انواع کاربری اراضی را با دقت بالا شناسایی و تفکیک کرده است. ساختار U-Net دقت کلی 92.47%، امتیاز ژاکارد 54.45% و ضریب کاپا 79.59% را به دست آورد. این نتایج توانایی قوی مدل را در تعریف مرزهای کلاسها نشان میدهد. بهبودهای آینده میتواند شامل استفاده از تصاویر چند طیفی و فراطیفی برای اطلاعات دقیقتر، ترکیب U-Net با سایر شبکهها مانند ANN، بهینهسازی فراپارامترها با استفاده از روشهای جستجوی پیشرفته و بهکارگیری یادگیری انتقالی، به ویژه در شرایط با دادههای محدود باشد. اجرای این استراتژیها میتواند دقت و کارایی در دستهبندی کاربری اراضی را افزایش دهد و کاربردهای وسیعتری در زمینههای علمی و عملی ارائه دهد.
سنجش از دور
امیرحسین غلامیان؛ فاطمه طبیب محمودی
چکیده
پیشینه و اهداف: جادهها به عنوان عناصر حیاتی و اساسی در توسعه و پیشرفت شهرها شناخته میشوند، زیرا نقش بسیار مهمی در ارتباطات و حمل و نقل دارند و نمایانگر میزان توسعه و رشد شهری میباشند. به منظور افزایش دقت و کارایی در تشخیص و طبقهبندی جادهها، محققان به طراحی و استفاده از روشهای خودکار مبتنی بر پردازش تصویر و یادگیری عمیق پرداختهاند. ...
بیشتر
پیشینه و اهداف: جادهها به عنوان عناصر حیاتی و اساسی در توسعه و پیشرفت شهرها شناخته میشوند، زیرا نقش بسیار مهمی در ارتباطات و حمل و نقل دارند و نمایانگر میزان توسعه و رشد شهری میباشند. به منظور افزایش دقت و کارایی در تشخیص و طبقهبندی جادهها، محققان به طراحی و استفاده از روشهای خودکار مبتنی بر پردازش تصویر و یادگیری عمیق پرداختهاند. این رویکردها، به دلیل قابلیتهای برترشان در تشخیص الگوها و ویژگیهای پیچیده تصاویر، به طور موثری جایگزین روشهای سنتی شدهاند و بهبود چشمگیری در دقت و سرعت تشخیص جادهها ایجاد کردهاند.روشها: در این تحقیق از یک مدل بهبودیافته رمزگذار-رمزگشای UNet3+ برای تشخیص جاده از تصاویر سنجش از دور استفاده شده است. در این مدل پیشنهادی از ماژول های تجمیع هرمی، توجه مکانی و توجه کانال برای بهبود نتایج تشخیصی استفاده شده است. ماژول توجه مکانی در معماری شبکه پیشنهادی برای بهبود تمرکز شبکه بر روی مکانهای مهم در نقشههای ویژگی استفاده میشود. ماژول توجه کانال نیز به شبکه اجازه می دهد تا روی اطلاعات مهم تمرکز بیشتری داشته باشد و در کارهایی مانند تشخیص ویژگی و طبقه بندی بهتر عمل کند. ماژول تجمیع هرمی برای دریافت اطلاعات چند مقیاسی طراحی شده است. این ماژول به شبکه کمک میکند تا مقیاسهای مکانی مختلف را با اعمال میانگینگیری در سطوح مختلف و سپس تغییر اندازه ویژگیهای متوسط به اندازه نقشه ویژگی اصلی، درک کند.یافتهها: ارزیابی قابلیت اجرایی شبکه پیشنهادی در تشخیص جاده های فرعی در مناطقی که تراکم مسکونی کمتری دارند و دارای پوشش خاکی و گیاهی هستند، نشان دهنده برتری این شبکه نسبت به نسخه اصلی UNet3+ است. شبکه بهبود یافته پیشنهادی در این مقاله توانست جاده ها را با دقت بیشتری تشخیص دهد. این امر نشان دهنده قدرت شبکه در تشخیص جاده ها در شرایطی است که تداخلات محیطی کمتری وجود دارد. نتایج کمی بهدستآمده از این شبکه نمایانگر این واقعیت است که استفاده از ماژولهای توجه مکانی و کانال و ماژول تجمیع هرمی توانسته است معیارهای دقت، بازخوانی، امتیاز F1 و IOU را به ترتیب 6، 15.6، 8.3 و 17.4 نسبت به نسخه اصلی شبکه UNet3+ افزایش دهد.نتیجهگیری: چالشهای مطرح در تشخیص خودکار جاده ها از تصاویر سنجش از دور اعم از تاثیر سایه و انسداد جاده با ساختمانها و پوشش گیاهی و شباهت جاده با پسزمینه میتواند منجر به کاهش دقت تشخیص جاده ها از تصاویر سنجش از دور گردد. استفاده از قابلیت های معماری رمزگذار-رمزگشای بهبودیافته UNet3+ در این تحقیق توانست بخشی از این چالش ها را کاهش داده و دقت نتایج تشخیص جاده های فرعی در مناطق دارای زمینه خاکی و پوشش گیاهی را افزایش دهد.
سنجش از دور
کیارش بروشان؛ سعید بهزادی
چکیده
پیشینه و اهداف: برنج به عنوان یک محصول استراتژیک در زمینه امنیت غذایی نه تنها در اقتصاد کلان جوامع بلکه در جایگاه جهانی نیز جایگاه ویژهای دارد. اهمیت این محصول در تأمین نیازهای غذایی جمعیت و نقش آن در تحقق امنیت غذایی، اهمیت جدی و چشمگیری به آن اختصاص داده است. در این راستا، جمعآوری دقیق و بهروز اطلاعات از وضعیت مزارع برنج، به ...
بیشتر
پیشینه و اهداف: برنج به عنوان یک محصول استراتژیک در زمینه امنیت غذایی نه تنها در اقتصاد کلان جوامع بلکه در جایگاه جهانی نیز جایگاه ویژهای دارد. اهمیت این محصول در تأمین نیازهای غذایی جمعیت و نقش آن در تحقق امنیت غذایی، اهمیت جدی و چشمگیری به آن اختصاص داده است. در این راستا، جمعآوری دقیق و بهروز اطلاعات از وضعیت مزارع برنج، به ویژه اطلاعات مرتبط با کمیت و کیفیت محصولات، امری بسیار حیاتی و اساسی است. استفاده از تکنولوژیهای سنجش از دور در این زمینه بهعنوان یک راهکار کارآمد و موثر مطرح شده است. این تکنولوژیها امکان جمعآوری اطلاعات پایشی از مزارع را با کمترین هزینه و در مناطق گستردهتر فراهم میآورند. از جمله این تکنولوژیها، پهپادها بهخاطر توانایی بهتر در تفکیک مکانی و دقت بالاتر در انجام پایشهای مختلف نسبت به ماهوارهها، از مزایای نسبی برخوردارند. تحقیق حاضر از یک رویکرد پیشرفته به نام یادگیری عمیق استفاده مینماید تا به منظور تخمین سطح زیر کشت برنج نشاء یا نهال از تصاویر RGB گرفته شده از پهپادها در منطقه ووفنگ استان تایچانگ کشور تایوان، اقدام نماید. این روش از توانمندیهای شبکههای عصبی عمیق بهعنوان یک ابزار موثر برای تحلیل دادههای پیچیده بهرهمند شده و به دقت بالایی در تفکیک انواع مختلف سطح زیر کشت نشاء یا نهال برنج دست یافته است.روشها: در این تحقیق، از یکی از روشهای پیشرفته یادگیری عمیق به نام DenseNet برای مدلسازی و پیشبینی سطح زیر کشت برنج نشاء یا نهال در تصاویر RGB گرفته شده از پهپادها استفاده شده است. این روش به وسیله الگوریتمهای پیچیده و مجموعهای از لایههای پردازشی، قابلیت استخراج مفاهیم انتزاعی سطح بالا را از دادهها دارد. یکی از ویژگیهای منحصر به فرد DenseNet این است که از الگوریتم لایه به لایه (Layer-to-Layer) به جای رویکردهای سنتی که از ادغام لایهها (layer concatenation) استفاده میکنند، بهرهمیبرد. در این الگوریتم، هر لایه مستقل از سایر لایهها کار میکند و به لایههای قبلی متصل میشود، که باعث کاهش تعداد وزنها و پارامترها و همچنین افزایش کارایی شبکه میشود. استفاده از قابلیت یادگیری عمیق برای پردازش بههنگام دادهها به صورت فوری پس از اخذ تصاویر نشاندهندهی قابلیت پویای DenseNet در پردازش اطلاعات بهسرعت و با دقت بالا است. این امکان به ما این اجازه را میدهد که در زمان واقعی به تحلیل و پیشبینی سطح زیر کشت برنج نشاء یا نهال پرداخته و اطلاعات مورد نیاز برای اداره بهینه مزارع را بدست آوریم.یافتهها: نتایج بهدستآمده از این تحقیق، تأییدگر دقت بسیار بالای 99.8 درصد را بر روی دادههای اعتبارسنجی نشان میدهد. این درصد بسیار بالا نشاندهندهی توانایی فوقالعاده روش یادگیری عمیق DenseNet در تخمین دقیق سطح زیرکشت برنج نشاء یا نهال میباشد. این دقت بالا نه تنها نشاندهندهی عملکرد بسیار خوب مدل در شناسایی و پیشبینی میزان کاشت برنج، بلکه اطمینان بخش بوده و به کاربران اعتماد میبخشد. مدل ارائهشده توانسته است با دقت بسیار بالا به تشخیص و ارزیابی سطح زیر کشت برنج نشاء یا نهال بپردازد. این امر در عمل به کشاورزان و مدیران مزارع ابزاری ارزشمند ارائه میدهد تا بهصورت دقیقتر و سریعتر از وضعیت مزرعه خود آگاه شوند و تصمیمگیریهای بهتری در مدیریت کشت و بهرهوری انجام دهند.نتیجهگیری: در مجموع، این تحقیق نشان میدهد که استفاده از پهپادها به همراه روشهای یادگیری عمیق، به منظور تخمین سطح زیرکشت برنج نشاء یا نهال با دقت بالا، در مناطقی چون ووفنگ استان تایچانگ تایوان، امکانپذیر است. این ارتقاء در تکنولوژی پایش میتواند به مدیران ذیربط در امور کشاورزی و امنیت غذایی کمک زیادی کند.