نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نقشه برداری، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

چکیده

پیشینه و اهداف: همزمان با توسعه‌ی شهرنشینی، افزایش جمعیت ساکن در شهرها و به تبع آن رشد و گسترش شهری، پوشش زیست محیطی و طبیعی نواحی پیرامون کلان‌شهرهایی نظیر تهران، دستخوش تغییراتی گردید تا به واسطه‌ی آن برای سکونت سرریز جمعیت شهری، آماده گردد. این‌گونه تغییرات در پوشش طبیعی اراضی، نه تنها تعادل گرمایی را بر هم می­زند، بلکه تأثیرات منفی بر چشم‌انداز، بهره ­وری انرژی، سلامت و کیفیت زندگی انسان نیز دارد. بنابراین، آگاهی از روند تغییرات پوشش و کاربری اراضی خصوصاٌ در محدوده‌ی کلان‌شهرها، طی دوره ­های زمانی بلندمدت برای برنامه­ ریزان و مدیران شهری، به منظور ارزیابی و پیش‌بینی مشکلات ناشی از این تغییرات، حائز اهمیت است. داده ­های سنجش از دور چندزمانه یکی از ابزارهای قدرتمند برای تشخیص تغییرات کاربری و پوشش زمین به دلیل رشد روزافزون شهری و به روزرسانی مدل­های سه­ بعدی شهر است.
روش‌ها‌: در این تحقیق، از تصاویر ماهواره­ ای لندست 7 و لندست 8 در دو بازه‌ی­ زمانی با فاصله 17 سال، بین سال­های 1381 تا 1398 به منظور بررسی تغییرات پوشش و کاربری اراضی در منطقه‌ی پردیس استفاده شده است. پس از اعمال پردازش ­های اولیه بر روی تصاویر و انجام قطعه‌بندی، سه کلاس عارضه‌ی سازه­های مسکونی، پوشش گیاهی و خاک به روش شیء مبنا، تشخیص داده شدند. سپس، تغییرات صورت گرفته در هر  کلاس  عارضه به روش پس طبقه‌بندی، تخمین زده شد. به منظور آشکارسازی تغییرات در این تحقیق، ضمن مقایسه و تفاضل کلاس­ های عارضه تشخیص داده شده در نقشه­ های طبقه ­بندی، نتایج آشکارسازی تغییرات محیط از جمله، تعیین میزان افزایش ساخت و سازها، تغییرات مساحت زمین­های خاکی و پوشش گیاهی به‌دست می­آید.
یافته‌ها: نقشه‌ی تغییرات کاربری/ پوشش اراضی تولید شده بین سال­های 1381 تا 1398 نشان داد که ساخت و سازها در منطقه‌ی پردیس، به سرعت در حال افزایش است و این امر، اثرات جدی بر محیط زیست دارد. با توجه به نتایج تشخیص تغییر پس طبقه‌بندی به‌دست ‌آمده، کلاس عارضه‌ی خاک حدود 17% کاهش و کلاس عارضه‌ی سازه­ها حدود 184% افزایش یافته است. در منطقه‌ی مورد مطالعه در این تحقیق، زمین­های کشاورزی نیز عمدتاً نابود و به جای آن­ها سازه­ها و ساختمان­ها، بنا شده­اند. افزایش تقریبی 104درصدی پوشش گیاهی این منطقه، به دلیل کاشت درختان و ایجاد فضای سبز در اطراف نواحی مسکونی می­باشد. برای ارزیابی نتایج آشکارسازی تغییرات در این تحقیق، از ارزیابی نقشه های طبقه بندی استفاده شد. در این راستا، مقادیر صحت کلی و ضریب کاپای نقشه‌ی طبقه‌بندی پوشش/ کاربری اراضی سال 1381 به ترتیب 41/98% و 86/0 و برای سال 1398 به ترتیب 01/97% و 87/0 به‌دست آمده است. استفاده از قابلیت‌های روش آنالیز شئ‌ مبنا در این تحقیق، در کنار دقت مکانی 15 متری تصاویر لندست، موجب شد که نقشه‌های طبقه‌بندی دقت قابل قبولی داشته باشند.
نتیجه‌گیری: با توجه به این‌که ساخت و ساز با تغییر اکوسیستم همراه است، ساخت واحدهای مسکن مهر پردیس نیز در مناطقی منجر به تخریب محیط زیست کوهستانی و در مناطقی نیز منجر به از دست رفتن پوشش گیاهی شده است. بر این اساس، رشد 184 درصدی ساخت و سازها بدون در نظر گرفتن زیرساخت­های مناسب و رعایت نکردن استانداردهای زیست محیطی، مشکلات فراوانی را برای منطقه‌ی پردیس ایجاد کرده است. استفاده از پیشرفت­های مطرح در فناوری­های برداشت داده­های سنجش از دور در قالب ادغام داده­ها و همچنین، استفاده از روش­های نوین پردازش تصاویر و تشخیص الگو نظیر یادگیری عمیق، می­تواند  به عنوان راه حل مناسبی برای کنترل نرخ ساخت و ساز و تغییرات محیطی در نظر گرفته شود.  

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Object Based Analysis of Land Use/Land Cover Changes Caused by Construction: A Case Study in the Mehr Pardis Housing Area

نویسندگان [English]

  • S. Bayat
  • F. Tabib Mahmoudi

Department of Surveying Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

چکیده [English]

Background and Objectives:The increasing population of the large cities has led to developing new constructions in areas around cities to create settlements for the overflow of the population.Such changes in the natural land cover not only disturb the heat balance, but also have negative effects on the landscape, energy efficiency, health and quality of human life. Therefore, it is important for urban planners and managers to be aware of the changes in land cover and land use, especially in metropolitan areas, during long-term periods of time, in order to evaluate and predict the problems caused by these changes. Multi-temporal remote sensing data are one the powerful tools fordetecting land use/cover changes due to the increasing urban growth and then, for updating the three dimensional city models.
Methods: In this paper, the impact of Mehr Pardis housing construction is investigated on the land use/cover changes. The proposed land use/ cover change detection strategy in this paper is a post-classification method based on performing object based image analysis procedure. For this reason, Landsat satellite images have been used in 17 years’ time interval, between 2002 and 2019. After performing initial image processing and image segmentation, the three object classes of residential buildings, vegetation, and soil were identified by the object based image analysis procedure. Then, post-classification change detection performed on the generated object based classification maps of both 2002 and 2019 epochs. For change detection in this research, while comparing and contrasting the classes of recognized objects in the classification maps, the results of revealing the changes in the environment, including determining the amount of increase in constructions, changes in the area of soil and vegetation It is obtained.
Findings: The produced change map and statistical analysis of the post-classification change detection results reveals that the soil object class is decreased for about 17% and built up areas are increased for about 184% in the 17 years’ time interval. Agricultural fields in this study area are mostly destructed due to the developments in constructing built up areas. The increasing amount of about 104% in vegetation covers relates to the trees and grasslands in new constructed built up areas. To evaluate the obtained results of changes detection in this research, the evaluation of classification maps was used. In this regard, the values of the overall accuracy and Kappa coefficient of the land cover/use classification map in 2002 were 98.41% and 0.86, respectively, and for 2019, 97.01% and 0.87, respectively. Using the capabilities of the object-based analysis method in this research, along with the 15-meter spatial accuracy of the Landsat images, made the classification maps have an acceptable accuracy.
Conclusion: Due to the fact that construction is associated with changing the ecosystem, the construction of housing units in Mehr Pardis has led to the destruction of the mountain environment in some areas and the loss of vegetation in other areas. It is illustrated in the produced land use/ cover change map between 2002 and 2019 that the constructions are rapidly increased in Pardis area and this causes the serious impacts on the environment. 

کلیدواژه‌ها [English]

  • Change detection
  • Land use/cover map
  • Object-based analysis
  • Remote Sensing
  • Segmentation

COPYRIGHTS 
© 2023 The Author(s).  This is an open-access article distributed under the terms and conditions of the Creative Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/

[14] Ossola A, Cadenasso ML, Meineke EK. Valuing the Role of Time in Urban Ecology. Vol. 9, Frontiers in Ecology and Evolution. 2021.
[17] Fekete A, Priesmeier P. Cross-border urban change detection and growth assessment for mexican-usa twin cities. Remote Sens. 2021;13.
[19] López-Serrano PM, Corral-Rivas JJ, Díaz-Varela RA, álvarez-González JG, López-Sánchez CA. Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using landsat 5 TM data. Remote Sens. 2016;8, 369, doi:10.3390/rs8050369.
[20] You Y, Cao J, Zhou W. A survey of change detection methods based on remote sensing images for multi-source and multi-objective scenarios. Remote Sens. 2020, 12, 2460; doi:10.3390/rs12152460.
[24] de Gélis I, Lefèvre S, Corpetti T. Change detection in urban point clouds: An experimental comparison with simulated 3d datasets. Remote Sens. 2021;13.
[25] Veettil BK, Zanardi RP. A comparative study of various urban change detection techniques using high spatial resolution commercial satellite images: Quickbird and Worldview-2. Proc 4th GEOBIA [Internet]. 2012;(1):76–84.
[26] Li L, Wang C, Zhang H, Zhang B, Wu F. Urban building change detection in SAR images using combined differential image and residual U-net network. Remote Sens. 2019;11.
[27] Pang L, Sun J, Chi Y, Yang Y, Zhang F, Zhang L. CD-TransUNet: A Hybrid Transformer Network for the Change Detection of Urban Buildings Using L-Band SAR Images. Sustain. 2022;14.