[2] Paukkonen N. Ten years of photogrammetry and LiDAR: Digital 3D documentation in Finnish archaeology between 2013–2022. Fennoscandia Archaeologica. 2024; XLI:56–69. Available from: https://doi.org/10.61258/fa.142220.
[3] Konsolaki A, Karantanellis E, Vassilakis E, Kotsi E, Lekkas E. Multitemporal monitoring for cliff failure potential using close-range remote sensing techniques at Navagio Beach, Greece. Remote Sens. 2024;16(23):4610. Available from: https://doi.org/10.3390/rs16234610.
[4] Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60:91–110. Available from: https://doi.org/10.1023/B:VISI.0000029664.99615.94.
[5] Lowe DG. Object recognition from local scale invariant features. In: Proceedings of the IEEE International Conference on Computer Vision; 1999; Kerkyra, Greece. p. 1150–1157. Available from: https://doi.org/10.1109/ICCV.1999.790410.
[6] Oniga VE, Breaban AI, Pfeifer N, Chirila C. Determining the suitable number of ground control points for UAS images georeferencing by varying number and spatial distribution. Remote Sens. 2020;12:876. Available from: https://doi.org/10.3390/rs12050876.
[7] Fleming ZD, Pavlis TL. An orientation-based correction method for SfM-MVS point clouds: Implications for field geology. J Struct Geol. 2018;113:76–89. Available from: https://doi.org/10.1016/j.jsg.2018.06.005.
[8] Jaud M, Bertin S, Beauverger M, Augereau E, Delacourt C. RTK GNSS-assisted terrestrial SfM photogrammetry without GCP: Application to coastal morphodynamics monitoring. Remote Sens. 2020;12:1889. Available from: https://doi.org/10.3390/rs12111889.
[10] Eltner A, Kaiser A, Castillo C, Rock G, Neugirg F, Abellán A. Image-based surface reconstruction in geomorphometry—Merits, limits and developments. Earth Surf Dyn. 2016;4:359–389. Available from: https://doi.org/10.5194/esurf-4-359-2016.
[11] Jaud M, Grasso F, Le Dantec N, Verney R, Delacourt C, Ammann J, Deloffre J, Grandjean P. Potential of UAVs for monitoring mudflat morphodynamics (Application to the Seine Estuary, France). ISPRS Int J Geo-Inf. 2016;5:50. Available from: https://doi.org/10.3390/ijgi5030050.
[12] Jaud M, Passot S, Allemand P, Le Dantec N, Grandjean P, Delacourt C. Suggestions to limit geometric distortions in the reconstruction of linear coastal landforms by SfM photogrammetry with PhotoScan® and MicMac® for UAV surveys with restricted GCPs pattern. Drones. 2018;3:2. Available from: https://doi.org/10.3390/drones3010002.
[13] Manfreda S, Dvořák P, Mullerova J, Herban IS, Vuono P, Arranz JJ, Perks M. Assessing the accuracy of digital surface models derived from optical imagery acquired with unmanned aerial systems. Drones. 2019;3:15. Available from: https://doi.org/10.3390/drones3030015.
[15] Czyża S, Szuniewicz K, Kowalczyk K, Dumalski A, Ogrodniczak M, Zieleniewicz Ł. Assessment of accuracy in unmanned aerial vehicle (UAV) pose estimation with the REAL-time kinematic (RTK) method on the example of DJI Matrice 300 RTK. Sensors. 2023;23(4):2092. Available from: https://doi.org/10.3390/s23042092.
[16] López RS, Murga RET, Silva-López JO, Rojas-Briceño NB, Fernández DG, Oliva-Cruz M, Taddia Y. Accuracy assessment of direct georeferencing for photogrammetric applications based on UAS-GNSS for high Andean urban environments. Drones. 2022;6(12):388. Available from: https://doi.org/10.3390/drones6120388.
[17] Ekaso D, Nex F, Kerle N. Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing. Geo-Spatial Inf Sci. 2020;23(2):165–181. Available from: https://doi.org/10.1080/10.2019/10095020.1710437.
[18] Morena S. Application of action camera video for fast and low-cost photogrammetric survey of cultural heritage. ISPRS Arch Photogramm Remote Sens Spatial Inf Sci. 2022;XLVIII-2/W1-2022:177–184. Available from: https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-177-2022.
[19] Arévalo-Verjel AN, Lerma JL, Prieto JF, Carbonell-Rivera JP, Fernández J. Estimation of the block adjustment error in UAV photogrammetric flights in flat areas. Remote Sens. 2022;14(12):2877. Available from: https://doi.org/10.3390/rs14122877.
[20] Liu X, Lian X, Yang W, Wang F, Han Y, Zhang Y. Accuracy assessment of a UAV direct georeferencing method and impact of the configuration of ground control points. Drones. 2022;6(2):30. Available from: https://doi.org/10.3390/drones6020030.
[21] Milan A, Shafiei M. Evaluation of the videogrammetry method for calculating the volume of earthworks in comparison with the conventional methods of land surveying. Journal of Engineering Geology 2023; 17 (2) :204-227 URL: http://jeg.khu.ac.ir/article-1-3079-fa.html.
[22] Milan A, Shafiei M. Evaluation of the Stability of Internal Camera Parameters of Smartphones in Videogrammetry for Earthwork Volume Calculation.
[23] DXO. Smartphones versus cameras: Closing the gap on image quality. 2020. Available from: https://www.dxomark.com/smartphones-vs-cameras-closing-the-gap-on-image-quality/.
[24] Alsubaie NM, Youssef AA, El-Sheimy N. Improving the accuracy of direct geo-referencing of smartphone-based mobile mapping systems using relative orientation and scene geometric constraints. Sensors. 2017;17(10):2237. Available from: https://doi.org/10.3390/s17102237.
[25] Tavani S, Granado P, Riccardi U, Seers T, Corradetti A. Terrestrial SfM-MVS photogrammetry from smartphone sensors. 2020. https://doi.org/10.1016/j.geomorph.2020.107318
[26] Jaud M, Bertin S, Beauverger M, Augereau E, Delacourt C. RTK GNSS-assisted terrestrial SfM photogrammetry without GCP: Application to coastal morphodynamics monitoring. Remote Sens. 2020;12(11):1889. Available from: https://doi.org/10.3390/rs12111889.
[27] Corradetti A, Billi A, Tavani S. Virtual outcrops in a pocket: Smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today. 2021;31. Available from: https://doi.org/10.1130/GSATG506A.1.
[28] Bessin Z, Jaud M, Letortu P, Vassilakis E, Evelpidou N, Costa S, Delacourt C. Smartphone structure-from-motion photogrammetry from a boat for coastal cliff face monitoring compared with Pléiades tri-stereoscopic imagery and unmanned aerial system imagery. Remote Sens. 2023;15(15):3824. Available from: https://doi.org/10.3390/rs15153824.
[29] Teppati Losè L, Chiabrando F, Maschio P. Direct georeferencing approaches for close-range and UAV photogrammetry in the built heritage domain. ISPRS Arch. 2023;XLVIII-M-2:1557-1564. Available from: https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1557-2023.
[30] Ocalan T, Turk T, Tunalioglu N, Gurturk M. Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry. Earth Sci Inform. 2022;15:2231-2238. Available from: https://doi.org/10.1007/s12145-022-00868-7.
[31] Halaj M, Kačmářík M. Performance assessment of kinematic GNSS positioning with smartphones based on post-processing of raw observations. GeoScience Eng. 2022;25:1-10. Available from: https://doi.org/10.35180/gse-2022-0080.
[32] Shan J, Li Z, Lercel D, Tissue K, Hupy J, Carpenter J. Democratizing photogrammetry: an accuracy perspective. Geo-spatial Inf Sci. 2023;26(2):175-188. https://doi.org/10.1080/10095020.2023.2178336
[33] Patonis P. A comparative study on the use of smartphone cameras in photogrammetry applications. Sensors. 2024;24:7311. https://doi.org/10.3390/s24227311
[34] Robustelli U, Baiocchi V, Pugliano G. Assessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysis. Electronics. 2019;8(1):91. https://doi.org/3390/10/electronics8010091.
[35] Yun J, Lim C, Park B. Inherent limitations of smartphone GNSS positioning and effective methods to increase the accuracy utilizing dual-frequency measurements. Sensors. 2022;22(24):9879. https://doi.org/3390/10/s22249879.
[36] Netthonglang C, Thongtan T, Satirapod C. GNSS precise positioning determinations using smartphones. In: Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS): November 11–14, 2019, Bangkok, Thailand. IEEE; 2019. p. 401–4. https://doi.org/10.1109/APCCAS2019/475188953132.
[37] BOCHKATI M, Sharma H, Lichtenberger CA, Pany T. Demonstration of fused RTK (fixed) + inertial positioning using android smartphone sensors only. In: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS): April 20–23, 2020, Portland, Oregon, USA. IEEE; 2020. p. 1140–1154. Available from: https://doi.org/10.1109/PLANS46316.2020.9109865
[38] Sharma, Himanshu, Bochkati, Mohamed, Lightenberger, Christian, Pany, Thomas, Darugna, Francesco, and Wubbena, Jannes B. “Smartphone-Based GNSS 67 Positioning – Today and Tomorrow.” Inside GNSS - Global Navigation Satellite Systems Engineering, Policy, and Design (blog), September 21, 2021. https://insidegnss.com/smartphone-based-gnss-positioning-today-and tomorrow/.
[39] Chaturvedi, Aditya. “Advantages of Dual-Frequency GNSS in Smartphones.” Geospatial World (blog), November 7, 2019. https://www.geospatialworld.net/blogs/advantages-of-dual-frequencygnss-in-smartphones/.
[40] Merry, Krista, and Pete Bettinger. “Smartphone GPS Accuracy Study in an Urban Environment.” PLOS ONE 14, no. 7 (July 18, 2019): e0219890. https://doi.org/1371/10/journal.pone.0219890.
[41] Nowak, Maciej M., Katarzyna Dziób, Łukasz Ludwisiak, and Julian Chmiel. “Mobile GIS Applications for Environmental Field Surveys: A State of the Art.” Global Ecology and Conservation 23 (September 2020): e01089. https://doi.org/1016/10/j.gecco.2020.e01089.
[42] Groves P. (2011). Shadow Matching: A New GNSS Positioning Technique for Urban Canyons, 417–430. https://doi.org/1017/10/S0373463311000087.
[43] Tomaštík, Julián, Juliána Chudá, Daniel Tunák, František Chudý, and Miroslav Kardoš. “Advances in Smartphone Positioning in Forests: Dual-Frequency Receivers and Raw GNSS Data.” Forestry: An International Journal of Forest Research 94, no. 2 (March 4, 2021): 292–310. https://doi.org/1093/10/forestry/cpaa032.